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This work paper proposes an elastic displacement field for a composite bar made of two constituents
(phases). The deformation hypothesis described by this field is built in full respect of all the conditions of
compatibility concerning deformation and strain-stress status of any kind. More else, the conditions of
continuity concerning the surface separating the two constituents are also fully satisfied. Using this new
displacement field we show that the tangent to each and every point of the characteristic curve built for this
composite material depends only on the size of external charge (loading) and the longitudinal deformation
of the composite bar. Based on these facts we also show that the constitutive equation of this composite
material is a non-linear one: in fact it is a concave curve the way that the slope of the tangent to each and
every point of the characteristic curve is decreasing as the deformation increases. We have released three
sample groups with different arrangements of reinforcing fibers from one group to any other one and we
have established the characteristic curve for each and every sample group. Using these curves we have
obtained the longitudinal elasticity modulus, the tension at break, the elongation at break as well as the
slope and the ordinate at the origin for the tangent to the breaking point of the characteristic curve. The
characteristic curves have the shape (allure) suggested by the theoretically obtained results. We have shown
that a certain parameter characterizing the non-linear behavior of the composite material is given by the
ratio between the longitudinal elasticity modulus and the value of the slope of the tangent to the breaking
point of the composite material characteristic curve.
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In composite materials containing fiber or particulate
reinforcement the interface separating matrix from
inclusion is widely believed to be a dominant influence
affecting the overall stiffness and damage tolerance
characteristics of the composite. Likewise damage
accumulation in a composite often depends on the
character of the mechanical response of the interface that,
in the case of a weak interface, may precipitate such
separation phenomena as brittle or ductile decohesion. In
many fiber-reinforced composite systems weak interfaces
or desirable since they generally raise the toughness,
however, are often at the expense of composite stiffness.
Accurate assessment of overall stiffness characteristics
of a composite containing fiber weakly bonded to the
matrix is therefore extremely important in the attempt to
obtain improved composite performance.

Numerous models currently exist to obtain the effective
moduli of spherical and cylindrical composite systems
which, for linear elastic constituent behavior and coherently
bonded interfaces, are reviewed in [1-4]. Because the
standard material models require for their implementation
the solution to a solitary inclusion-interface-matrix system
the problem of obtaining effective material properties for a
composite is, to a large extend, dependent on the
availability of the elastic field solutions to the solitary
problem. For the case of a unidirectional fiber-reinforced
composite which can reasonably be regarded as having
effective transverse isotropic and homogeneous material
properties this amounts to the solution of the solitary
problem under a variety of loading conditions.

Employing the method of cells [3-5] have been  obtained
effective properties of fiber-reinforced materials which
allow for only shear interface discontinuities while [6]
utilizes the same method and allows for linear shear and
normal interface force-separation behaviour.  The interface
was characterized by a linear relation between interfacial
traction and interfacial displacement jump so that
phenomenon of cavity formation by interfacial decohesion
was not accounted for. In [7] is represented a natural
extension of existing model in which a more realistic
nonlinear interface separation mechanism is considered
in the problem of effective transverse bulk response of a
composite containing random distribution of unidirectional
linear elastic fibers embedded in a linear elastic matrix in
dilute and nondilute concentration. In the solitary fiber
problem interface characterization assumed the form of a
nonlinear force-separation law which couples the normal
component of displacement jump to the normal
component of interface traction and which requires a
characteristic length for its prescription. Interaction effects
due to finite fiber volume concentration, along with the
phenomenon of brittle decohesion arising in the solitary
fiber problem from the bifurcation of equilibrium separation
at the fiber matrix interface, are shown to precipitate
instability in the composite.

Nonlinear viscoelastic behavior has been observed in
laboratory tests of polymer matrix composites [8-10].
Elastic approaches cannot accurately predict residual
stress and strain fields since material properties and
strengths of polymeric matrix composite are strongly time
dependent [11-12]. In composite structural design, time-
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dependent effects of polymer matrix composite materials
must be considered in order to ensure realistic analysis
and the environmental durability over the entire life span of
composite structures.

Interlaminar stresses near free edges are mainly
responsible for delamination failures. Numerous studies
have been undertaken to investigate interlaminar stresses
and failures of laminated composites. In [11] is studied
the interlaminar tensile strength under static and fatigue
loads including the temperature and moisture effects. In
[13] is studied the effect of geometric nonlinearities on
free-edge stress fields. In [14] is investigated the response
and failure for dropped-ply laminates tested in flat-end
compression, and [15] have shown that the times for
delamination onset occurrences in composites can
predicted probabilistically. Their analysis includes
stochastic processes due to combined random loads and
random delamination failure stresses as well as random
anisotropic viscoelastic material properties.

A finite element formulation for analyzing interlaminar
stress fields in nonlinear anisotropic viscoelastic laminated
composites, including a hydrothermal formulation, is
presented in [16, 23-28, 30]. The results indicate a strong
sensitivity to the nonlinearities of the viscoelastic
constitutive relations.

For composite materials like boron-epoxy resin or
graphite – epoxy resin a non-linear behaviour appears due
to the material matrix that affects mainly the shear
modulus [17, 22]. Similar results have been obtained in
[18,19, 29]. In [20, 21] some studies have been made on
the non-linear behaviour of the composite plates having
epoxy or phenolic based matrix and being randomly
reinforced.

Theoretically-obtained results
Let’s consider a displacement status having the

following form:

                                    (1)

The components of the deformation tensor will be
calculated using the following relations:

(2)

We obtain:

 (3)

The Saint-Venant are fulfilled and that can be verified
immediately:

           (4)

The strain-stress status is given by Hooke equation. We
obtain:

where c11,  c22, c33,c12,c13,c23,c44,c55,c66, have constant values
and depend only on the nature of the material.

The components of the strain-stress tensor have to
satisfy the Cauchy equilibrium equations:

(6)

The following relations are obtained:

(7)

In the case of homogenous materials:

(8)

where E is the Young modulus and υ  is the Poisson ratio.
In the case of homogenous materials the functions u(x3)

and  ν(x3) take the following form:

(9)

where the constants resulting from integration, c1,....c8, will
be determined from the boundary conditions the strain-
stress field has to fulfill on the free faces of the material.

Let’s consider a composite bar made of two
homogenous constituents. Its right transverse section is
considered as being a rectangular one (fig. 1) and Ox1, x2,
is the separation plan between the two constituents.

Under the action of  certain external forces each
constituent deformes itself the way that the displacement
status is given by relations like (1).

(5)
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Fig. 1.

Fig. 2.

Lets’s consider:
 , the components of the deformation tensor

for the constituent No. 1;
, the components of the deformation tensor

for the constituent No. 2;
, the components of the deformation tensor

for the constituent No. 1;
, the components of the deformation tensor

for the constituent No. 2.
On the separation surface between the two constituents

the following conditions of continuity must be fulfilled:
-for the strain-stress status

(10)

-for the deformation status

(11)

On the free faces of the composite bar the following
conditions must be fulfilled:

-on the upside surface:

(12)

-on the downside surface

(13)

-on the lateral surfaces

(14)

We shall define the medium average longitudinal in the
right transverse section of the composite bar:

        (15)

where S is the aria of the right transverse section of the bar.
The same way we define the normal medium average

stress (effort) in the right transverse section of the bar:

          (16)

In case that the relations (10 – 14) are fulfilled, we
obtain:

           (18)

where:
- k  is the longitudinal deformation for x3 = 0;
- β characterizes the continuity of streses(efforts) for
   x3 = 0 ;
-  Ei, νi, are the Young modulus and the Poisson ratio for

the  „i”  (i=1,2) constituent;
- Vi(i=1,2) is the volumetric ratio for the  „i” material.

Using the relations (17) and (18) we can obtain a direct
relation between the medium average stress (effort) and
the medium average deformation like the following one:

            (19)

For extremely low values of external charge (loading),
the m parameter coincides with the longitudinal elasticity
modulus and decreases as the external charge (loading)
increases. Meanwhile n increases as the external charge
(loading) increases, starting with the „0" value. So, the
relation (19) cannot be accepted as a constitutive equation
for the entire composite material. The relation (19) can be
accepted as the equation of the right tangent to the point
(ε,σ) of the characteristic curve (length). The
characteristic curve (length) results from wrapping of all
tangents of this kind (fig. 2).

Because both medium average deformation and
medium average stress (effort) depend on k  and β, it
becomes obvious that the longitudinal elasticity modulus
could have values contained in some kind of „range”. A
range of this kind depends on the value of these
parameters.

For example, considering the values k = 0 and β=0, the
corresponding longitudinal elasticity modulus is different
from the same modulus obtained for k ≠ 0 and β=0. In
fact, both  k  and β are different from zero. So, the
longitudinal elasticity modulus has to be obtained using
experimental methods.

(17)
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Fig. 3a, b

Fig. 4a, b

Fig. 5

Fig. 7

Fig. 6

Experimental results
We have released three sample groups of  carbon fiber

reinforced composite materials having their matrix made
of epoxy resin.

For the first sample group a carbon fiber called  „A” type
was used. This fiber is presented in the figure 3 (from face
3a, from behind 3b).

For the second sample group a carbon fiber called „B”
type was used. This fiber is presented in the figure 4 (from
face 4a, from behind 4b).

The third sample group containes samples were
reinforced with alternative layers of both „A” and „B” fiber
types.

Test-pieces have been released from each and every
group of samples. Each and every test-piece has supported
a tensile test.

The characteristic curve (length) corresponding to a test-
piece having reinforcing of „A” type is presented in the
figure 5.

The characteristic curve (length) corresponding to a test-
piece having reinforcing of „B” type is presented in the
figure 6.

The characteristic curve (length) corresponding to a test-
piece having reinforcing of both „A” and „B” types is
presented in the figure 7.

The thickness, the width and the distance between
tanks were measured using a digital slide rule. All the other
values were read on the computer screen right after the
test was made.

Analyzing all data we can pick up the main mechanical
and strength-related characteristics of materials being
parts of experiments (tensile strength, tensile-break
elongation). These characteristics are presented in the
table 1.

The equations of tangents at the beginning points (the
origins of the axis system) and at the break points of the
characteristic curves were determined.

Using those equations, the longitudinal elasticity
modulus, the slope and the ordinate at the origin of the
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Table 1

Table 2

tangent to the break point. All these issues are presented
in the table 2.

Conclusions
The theoretical expressions we are proposing for the

displacement field were found the way that they are fully
satisfying both the compatibility conditions for deformations
and stresses (efforts) (Saint Venant and Cauchy).

All the continuity conditions for deformations and
stresses (efforts) on the separation surface between
constituents as well as for the free surfaces of the material
were fulfilled.

The obtained theoretical results are making good
predictions on existing non-linearities, as wel as for their
limits without (unfortunately) determinining the exact form
of the constitutive equations for the composite materials.

The experimental results (the experimental-obtained
characteristic curves) confirm the theoretically-obtained
results.

The analysis of the characteristic curves confirms the
arise of non-linear dependence between the stres and
deformation and that way anticipated in the theoretical
approach.

The slope of the tangent to each and every point of the
characteristic curve is decreasing as the deformation
increases and meaning that the second derivative of the
function describing the characteristic curve takes only
negative values and, as consequence, the curve is a
concave one.

We, also, may conclude that, if the charges (loadings)
wouldn’t be kind of continous, the elasticity modulus would
decrease from a loading to a next one. This fact could be
explained through the arising  plastic phenomena even at
the beginning of a loading proces. These plastic
phenomena are possible because the strain-stres status
corresponding .

to  reinforcing fibers are significantly different from those
corresponding to matrix and, so, those which constiuents
tend to deform themselves differently and the deformation
tensor will be not a linear one (the displacement field will
be described by non-linear functions).

Some other potential reasons for the non-linear behaviour
could be:

- the reinforced fibers are not simultaneously put in
charge  because the fabric is not perfect: it actually might
contain some „curved” fibers that are taking the charge
after they reach the right form;

- some sliding phenomena on the separation surface
between constituents;

- due to the fiber-form of the reinforcing constituent,
the volumetric ratio of the reinforcing constituent might
differ from one zone to another of the composite material.
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